You have selected a reliable, high-quality dispensing system from Nordson EFD, the world leader in fluid dispensing. Nordson EFD dispensing systems are designed specifically for industrial dispensing and will provide you with years of trouble-free, productive service.

This manual will help you maximize the usefulness of your dispensing system.

Please spend a few minutes to become familiar with the controls and features. Follow our recommended testing procedures. Review the helpful information we have included, which is based on more than 50 years of industrial dispensing experience.

Most questions you will have are answered in this manual. However, if you need assistance, please do not hesitate to contact EFD or your authorized EFD distributor. Detailed contact information is provided on the last page of this document.

The Nordson EFD Pledge

Thank You!

You have just purchased the world’s finest precision dispensing equipment.

I want you to know that all of us at Nordson EFD value your business and will do everything in our power to make you a satisfied customer.

If at any time you are not fully satisfied with our equipment or the support provided by your Nordson EFD Product Application Specialist, please contact me personally at 800.556.3484 (US), 401.431.7000 (outside US), or Srini.Subramanian@nordsonefd.com.

I guarantee that we will resolve any problems to your satisfaction.

Thanks again for choosing Nordson EFD.

Srini Subramanian
Srini Subramanian, General Manager
Contents

Contents..3
Introduction ..4
Valve Configuration Options ...4
 Piezo Actuator..4
 Fluid Body Assembly ...4
 Fluid Inlet Fitting..4
 HD Piezo Actuator for Contact Dispensing..5
How the Valve Operates ...5
How the Valve is Controlled ..6
Nordson EFD Product Safety Statement ..6
Specifications..7
Operating Features ..8
Installation ..9
 Install the Ancillary System Components ..9
 Install the Fluid Body Assembly and Mount the Valve ...9
 Install the Tip Adapter (Option) ...10
Make the System Connections..11
Fluid Body Assembly Removal and Installation ..12
Service..13
 Recommended Maintenance Schedule ..13
 Cleaning the Exterior of the Valve ..13
 Cleaning the Interior of the Valve ...14
 Purge the Valve ...14
 Clean the Fluid Path by Purging with a Cleaning Fluid ...15
 Clean the Valve by Disassembling the Fluid Body ...16
 Clean the Fluid Body Seat ...18
 Clean the Cartridge Components and Sealing Screw ..18
 Clean the Piezo Actuator ...19
 Assemble the Fluid Body Assembly ..20
Replacement Parts ..21
 Piezo Actuator ..21
 Tip Adapter Kits ..22
 Fluid Body Assemblies...23
 Flat Nozzle Fluid Body Assemblies ...23
 Extended Nozzle Fluid Body Assemblies ...23
 Rebuild Kit, Cleaning Kit, and Special Tools...24
 Fluid Inlet Fittings ..25
 Valve Extension Cables...25
Optional Parts and Accessories ..26
Troubleshooting...27
Introduction

The PICO® Pulse™ modular valve is an electrically operated, modular, piezo-actuated dispensing valve designed for high-speed, accurate dispensing. The Pulse valve can apply precise microdeposits (as low as fractions of a microliter) of fluids onto a substrate, making it ideal for dispensing onto hard-to-access areas or uneven or delicate substrates. The fluid to be dispensed is pneumatically supplied to the valve through a reservoir, such as a pressure tank or pump.

Valve Speed and Deposit Size

Due to the extremely fast piezo actuator, fluid dispensing frequencies of up to 1500Hz* are possible. Precision engineered Pulse valves can dispense dots as small as 0.5 nL (depending on the fluid nozzle plate orifice). Because pulse times can be adjusted in increments as small as 0.01 ms, it is possible to set a very exact dispensing quantity.

*With approved conditional settings

Modular, Exchangeable Components

Because the valve’s components are modular and exchangeable, the time required to service the valve can be as little as the few seconds required to change out the fluid body assembly. The modular design also facilitates valve service because the entire fluid body assembly can be removed and disassembled for cleaning purposes.

Diverse Fluid Dispensing

The Pulse valve is suitable for the precise dispensing of a variety of chemically diverse fluids. These fluids may have various viscosities and may also contain fillers. To meet the dispensing requirements for a broad range of fluids, a range of dispensing accessories are available to allow:

- Non-contact dispensing of individual free-flying droplets onto surfaces/parts
- Non-contact dispensing of a fluid stream
- Tip dispensing for contact applications

Easy Integration into Systems

Integration into automation systems is easily accomplished because of the Pulse valve’s compact size and the number of fixturing / mounting holes available on the valve body. The installation position (vertical, horizontal, angled, pointing upward, etc.) does not impact valve performance.

Valve Configuration Options

The Pulse valve has several configuration options for maximum fluid and application compatibility.

Piezo Actuator

Two types of piezo actuator are available: standard duty (SD) and heavy duty (HD). HD piezo actuators are designed for high-duty cycle applications and also for contact dispensing applications.

Fluid Body Assembly

Fluid body assemblies are available with flat or extended nozzles in seat sizes ranging from 50–600 microns with a choice of Type D and Type E geometries.

Fluid Inlet Fitting

Many sizes and types of fluid inlet fittings are available, including barb, compression, and luer lock fitting types.
Valve Configuration Options (continued)

HD Piezo Actuator for Contact Dispensing

An HD Pulse contact dispense valve developed specifically for contact dispensing applications is available. When combined with one of three available tip adapter kits, this valve can be used for many high-speed contact dispensing applications. The valve features three holes in the heater block for attaching the required tip adapter assembly.

How the Valve Operates

The Pulse valve is driven by piezo actuators. Piezo movement is imparted to a rod via a lever located in the piezo actuator. The movement of this rod is imparted to a shutoff ball stem in the valve seat. The sealing ball is made of wear-resistant ceramic, which is attached at the lower end.

In the closed position, the ceramic ball seats into a ceramic nozzle seat, preventing any fluid flow.

When the ceramic ball is lifted, fluid flows through the nozzle and is dispensed.

How the Valve is Controlled

The PICO Touch™ valve controller provides an easy-to-use and intuitive touchscreen interface for setup and control of the Pulse valve. Refer to the PICO Touch controller manual for complete installation, setup, and operation information.
Nordson EFD Product Safety Statement

NOTE: The following safety information is specific to the PICO Pulse valve. For a complete Nordson EFD product safety statement, refer to the PICO Touch controller manual.

⚠️ WARNING
The safety message that follows has a WARNING level hazard.
Failure to comply could result in death or serious injury.

⚠️ CAUTION
The safety message that follows has a CAUTION level hazard.
Failure to comply may result in minor or moderate injury.

⚠️ CAUTION
Do not dry cycle the PICO Pulse valve! The ceramic nozzle seat and ball can be damaged if the Pulse valve is operated without fluid, causing leakage and a poor seal. Precise dispensing can no longer be guaranteed if this occurs.

Intended Use
Use the Pulse valve only in conjunction with the Touch controller, its associated power cable and, if needed, its associated extension cable.

Nordson EFD recommends avoiding the use of dispensing fluids that could damage or are not compatible with the following wetted materials present inside the Pulse valve:
- Stainless steel grade 1.4305 (AISI grade 303)
- Ceramic
- Viton® (exterior O-ring option)
- Perfluoroelastomer

Anaerobic methacrylates and pre-mixed two-part adhesives with a short pot life are not recommended because they can cure or harden in the valve, causing failure.

Dispensing of cyanoacrylates is possible under certain conditions. Contact your Nordson EFD representative for recommendations and technical support.

Unintended Fluid Release
- Prior to initial operation, check to see if fluid flows out of a valve that is turned off even when no fluid pressure is being applied. If this occurs, it may be because the fluid reservoir is positioned higher than the valve, in which case hydrostatic pressure causes the fluid to flow out of a valve that is not closed. Position the fluid reservoir low enough such that no fluid leaks from the valve when the valve is shut off.
- In the case of damage to the piezo actuator or the Touch controller, the valve may transition from a CLOSED to OPEN condition, which can cause fluid release. Nordson EFD recommends continually monitoring the status signal of the Touch controller and immediately and automatically bleeding the fluid reservoir if these signals indicate an error.
- Before connecting or disconnecting a valve cable, release fluid pressure and disconnect and lock out power to the Touch controller.

Personal Safety
- Provide operators with appropriate identification and protection against contact in case the valve temperature exceeds +45° C (113° F).
- To divert static charges from the Pulse valve, connect it to the machine system ground. Vacant fastening threads may be used for this.
Specifications

NOTE: Specifications and technical details are subject to engineering change without prior notification.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>22W x 120H x 75L mm</td>
</tr>
<tr>
<td></td>
<td>0.9W x 5H x 2.92W*</td>
</tr>
<tr>
<td>Weight</td>
<td>Pulse non-contact jet valve</td>
</tr>
<tr>
<td></td>
<td>With cable: 524 g (18.5 oz)</td>
</tr>
<tr>
<td></td>
<td>Without cable: 362 g (12.8 oz)</td>
</tr>
<tr>
<td></td>
<td>Pulse contact dispense valve</td>
</tr>
<tr>
<td></td>
<td>With tip adapter / with cable: 538 g (19 oz)</td>
</tr>
<tr>
<td></td>
<td>With tip adapter / without cable: 376 g (13.3 oz)</td>
</tr>
<tr>
<td></td>
<td>Without tip adapter / with cable: 524 g (18.5 oz)</td>
</tr>
<tr>
<td></td>
<td>Without tip adapter / without cable: 362 g (12.8 oz)</td>
</tr>
<tr>
<td>Maximum fluid pressure</td>
<td>49 bar (700 psi)</td>
</tr>
<tr>
<td>Fluid inlet thread</td>
<td>M5</td>
</tr>
<tr>
<td>Mounting</td>
<td>Valve: M4 x 0.7</td>
</tr>
<tr>
<td></td>
<td>Tip adapter kits for HD contact valves: M2.5 X 0.45</td>
</tr>
<tr>
<td>Continuous running condition</td>
<td>Maximum stack temperature: 55° C (131° F)</td>
</tr>
<tr>
<td>Continuous running condition</td>
<td>Maximum continuous operating frequency: 250Hz or 4 ms</td>
</tr>
<tr>
<td>(see NOTES below)</td>
<td>Maximum burst frequency: Up to 1500Hz*</td>
</tr>
<tr>
<td></td>
<td>Maximum opening time: 0.25 ms</td>
</tr>
<tr>
<td></td>
<td>Maximum closing time: 0.20 ms</td>
</tr>
<tr>
<td></td>
<td>Maximum stroke: 90%</td>
</tr>
<tr>
<td></td>
<td>Maximum close voltage: 120V (when a Delta of 90V is applied for voltages above 100V)</td>
</tr>
<tr>
<td>Continuous running condition</td>
<td>Maximum stack temperature: 85° C (185° F)</td>
</tr>
<tr>
<td>Continuous running condition</td>
<td>Maximum continuous operating frequency: 1000Hz or 1 ms</td>
</tr>
<tr>
<td>(see NOTES below)</td>
<td>Maximum burst frequency: up to 1500Hz*</td>
</tr>
<tr>
<td></td>
<td>Maximum opening time: 0.25 ms</td>
</tr>
<tr>
<td></td>
<td>Maximum closing time: 0.20 ms</td>
</tr>
<tr>
<td></td>
<td>Maximum stroke: 90%</td>
</tr>
<tr>
<td></td>
<td>Maximum close voltage: 120V (when a Delta of 90V is applied for voltages above 100V)</td>
</tr>
<tr>
<td>Material</td>
<td>Fluid body: 303 stainless steel</td>
</tr>
<tr>
<td></td>
<td>Wetted path: Passivated stainless steel</td>
</tr>
<tr>
<td></td>
<td>Inner O-ring: Perfluoroelastomer</td>
</tr>
<tr>
<td></td>
<td>Outer O-ring: Viton or perfluoroelastomer (optional)</td>
</tr>
<tr>
<td></td>
<td>Ball and seat: Ceramic</td>
</tr>
<tr>
<td></td>
<td>Heater body: Aluminum</td>
</tr>
<tr>
<td></td>
<td>Tip adapter kits for HD contact valves: 303 stainless steel</td>
</tr>
<tr>
<td>Maximum fluid body</td>
<td>100° C (212° F)</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>Product classification</td>
<td>Installation Category 2</td>
</tr>
<tr>
<td></td>
<td>Pollution Degree 2</td>
</tr>
</tbody>
</table>

*With approved conditional settings

NOTES:
- Continuous running condition maximums apply when the stack temperature does not exceed 55° C (131° F) for an SD valve or 85° C (185° F) for an HD valve. The valves can be subject to other operating conditions as long as the stack temperature does not exceed these temperature maximums.
- Tip adapter kits are for use with HD contact valves only.
Operating Features

- Piezo actuator
 - SD (Standard Duty)
 - HD (Heavy Duty)
 - HD (Heavy Duty) for contact dispensing

- Fluid body seat

NOTE: The fluid body seat and cartridge are precisely calibrated as a matched set and cannot be replaced individually. Doing so can damage the valve.

- M5 fitting

NOTE: Refer to “Fluid Inlet Fittings” on page 25 for all fluid fitting options.
Installation

Prior to installing the valve, read the associated reservoir and valve controller operating manuals to become familiar with the operation of all components of the dispensing system.

Install the Ancillary System Components

Install any components other than the Pulse valve and controller that will comprise the complete dispensing system. For example, if you are using a fluid reservoir, position and install all the fluid reservoir components. For all ancillary components, refer to the quick start guide and/or operating manual provided with those components for installation, setup, and operating instructions.

Install the Fluid Body Assembly and Mount the Valve

1. Open the heater body of the piezo actuator by pushing the latch pin back towards the valve.
 NOTE: For installations with limited side access, an optional latch release tool is available. Refer to “Rebuild Kit, Cleaning Kit, and Special Tools” on page 24 for the part number.

2. Insert the fluid body assembly and close the heater body, ensuring it is fully engaged.

3. (Optional) Secure the valve to the mounting bracket. There are multiple mounting holes to allow for adjustment. Some valve mounting examples are shown below.

4. Install the valve on the dispensing equipment.

Examples of valve mounting using the optional bracket
Install the Tip Adapter (Option)

If installing the piezo actuator for contact dispensing (P/N 7362059), install the applicable tip adapter kit components. Refer to “Rebuild Kit, Cleaning Kit, and Special Tools” on page 24 for adapter kit part numbers.

NOTE: Tip adapter retaining nuts should be finger-tightened.
Make the System Connections

These system installation illustrations provide an overview of a typical installation of a PICO Pulse valve and Touch controller system. For complete installation, setup, and testing instructions, refer to the Touch controller operating manual.

Always depressurize a reservoir before opening it. For tank installations: (1) slide the shutoff valve on the air line away from the reservoir and (2) open the pressure relief valve. Before opening the reservoir, check the pressure gauge to verify that pressure is zero (0). For syringe barrel installations, disconnect the adapter assembly from the reservoir pressure regulator and gauge. On all EFD syringe barrels, the unique threaded design provides fail-safe air pressure release during cap removal.
Fluid Body Assembly Removal and Installation

You can quickly remove the fluid body assembly of the Pulse valve and install a replacement fluid body assembly, thus greatly minimizing down time. The removed fluid body assembly can be serviced and ready for use for the next required fluid body assembly change-out.

1. Depressurize the system.

2. At the PICO Touch controller, press the VALVE icon () and then press POWER to switch the valve OFF.

3. If the valve is heated, press the HEATERS icon () and then press OFF.

⚠️ CAUTION

- To prevent damage to the tappet, remove the syringe barrel before opening the heater body.
- When opening the heater body, be ready to catch the fluid body assembly. Dropping the assembly can damage it.

4. Important: Remove the syringe barrel from the fluid inlet fitting.

5. Remove the fluid body assembly as follows:
 a. Push both sides of the latch pin towards the piezo actuator to open the heater body. This completely frees the fluid body assembly.

 NOTE: To avoid contacting a heated valve, use the latch release tool to open the heater body. Refer to “Rebuild Kit, Cleaning Kit, and Special Tools” on page 24 for the latch release tool part number.

 b. Remove the fluid body assembly from the heater body by pulling up on the fluid inlet fitting.

6. Insert the new fluid body assembly and close the heater body, ensuring it is fully engaged.

Important: To prevent damage to the tappet, remove the syringe barrel BEFORE removing the fluid body assembly.

The optional latch release tool provides the best way to open the heater body.
Service

Maintenance and inspection of wear parts (such as the fluid body assembly) is recommended after 10,000,000 dispensing cycles. This can vary depending on the type of fluid body assembly and fluid dispensed. Contact your Nordson EFD representative for additional information on valve wear and damage.

Valve service refers to a preventive cleaning of the valve’s wetted components, particularly in the fluid flow path areas. To service the valve, conduct a visual inspection of all areas of the wetted parts for wear and damage and use the procedures in this section to clean the valve or to replace the fluid body, cartridge, or other individual parts as needed.

CAUTION

Before any component change or service activity, relieve air pressure from the fluid reservoirs and switch off heater control (if applicable).

Recommended Maintenance Schedule

Cleaning and maintenance intervals vary based your operating conditions (dispensing frequency, frequency of use, dispensing material, etc.). The following table provides recommendations only.

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommended Replacement Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tappet sealing O-ring replacement</td>
<td>100 million cycles or as needed depending on the dispensing material.</td>
</tr>
<tr>
<td>Cartridge spring, guide, and cartridge body O-ring</td>
<td>250 million cycles or as needed depending on the dispensing material.</td>
</tr>
<tr>
<td>Fluid inlet fitting and O-ring</td>
<td>250 million cycles or as needed depending on the dispensing material.</td>
</tr>
</tbody>
</table>

NOTE: The sealing effectiveness of O-rings can be compromised if the replacement intervals are too long, causing worn or damaged O-rings. Worn or damaged O-rings can compromise valve operation.

Cleaning the Exterior of the Valve

CAUTION

Do not use dripping wet cloths and do not pour solvents, alcohol, water, or other liquids directly onto the piezo actuator. Do not submerge the piezo actuator in the cleaning agent. Doing so can introduce liquid into the electromechanical drive area and destroy it.

To clean the valve exterior, use a soft cotton or cellulose cloth. If the valve is extremely dirty, slightly moisten the cloth with alcohol.
Service (continued)

Cleaning the Interior of the Valve

To precisely dispense accurate, small amounts of fluid, the Pulse valve has an extremely small opening. This opening can become clogged or blocked by very small contaminants, adversely affecting dispensing results.

How to Determine if Valve Cleaning is Needed

Valve contamination is manifested by the following symptoms:

- Poor dispensing.
- Residual flow of the fluid after the valve closes, in which drops or a film form on the exterior side of the nozzle plate.
- No fluid flow, caused by clogging of the nozzle plate orifice.

Poor valve operation is not always caused by contamination. Check the following first:

- Is the valve properly connected? Check the cable connections between the dispensing valve, the Touch controller, and the PLC or other controllers to ensure that power is supplied. Is the controller display ON?
- Is the valve supplied with fluid? Check the fluid amount. Check the pressure supply.
- Are the setup parameters correct? Check the dispensing parameters, the valve setpoint temperature, and the input and output reservoir pressure.
- Is an error message displayed on the controller?
- Does the valve work when dispensing is activated? The mechanical opening and closing is normally audible (depending on the fluid and ambient noise level).

If other potential errors have been ruled out and the problem persists, continue to the following procedures to clean the valve.

Purge the Valve

Before disassembling the valve to clean it, first attempt to remove the contamination by purging the valve.

1. At the Touch controller, press the VALVE icon.
2. Press and hold the PURGE icon until the fluid stream flows clean, then release PURGE.
 NOTE: With some fluids, the pressure supply must be increased to improve flow.
3. Test the operation of the valve. If purging does not remove the contamination, continue to the next procedure to rinse the fluid path with a cleaning fluid.

Location of the PURGE button
Clean the Fluid Path by Purging with a Cleaning Fluid

If purging the valve does not resolve clogging or contamination issues, try purging the fluid path with a cleaning fluid.

1. Clarify with the fluid manufacturer which cleaning fluid is best suited for cleaning the dispensed fluid.

2. If the valve is heated, press the HEATERS icon and then press OFF.

3. Depressurize and open the system. Replace the dispensing fluid with a suitable cleaning fluid. Use an appropriate pressure tank or fluid container for the cleaning fluid to prevent unnecessary contamination.

4. Apply pressure to the pressure tank or fluid container.

5. Press the VALVE icon.

CAUTION

Do not dry cycle the Pulse valve! The ceramic nozzle seat and ball can be damaged if the Pulse valve is operated without fluid, causing leakage and a poor seal. Precise dispensing can no longer be guaranteed if this occurs.

6. Press and hold the PURGE icon until the fluid stream flows clean, then release PURGE.

7. For optimum cleaning, close the valve and allow the cleaning fluid to soak in the closed valve for approximately 5 minutes.

8. Open the valve again and allow the fluid to flow until all the cleaning fluid is purged.

 NOTE: When there is no more cleaning fluid in the reservoir, compressed air is released. This can contaminate the workstation. Hold a cloth in front of the nozzle.

9. Repeat the cleaning cycle (steps 3–8) as many times as needed to completely clean the fluid path. Usually, the higher the viscosity of the fluid, the longer it is necessary to clean.

10. Depressurize the system.

11. Exchange the cleaning fluid container for a new dispensing fluid reservoir and run the dispensing fluid through the valve until it flows in an undiluted form.

12. Test the operation of the valve. If the valve still does not function properly, continue to the next procedure to clean it manually.
Service (continued)

Clean the Valve by Disassembling the Fluid Body

If purging the valve does not resolve clogging or contamination issues, remove and disassemble the fluid body assembly to fully clean the fluid path.

You will need the following items:
- Fluid body cartridge rebuild kit (includes the tappet, spring, guide, and O-rings)
- Picovalve cleaning kit (includes brushes, cotton swabs, mini-reamers, and a magnifying loupe)
- Adjustable wrench
- Flat-tip screwdriver

NOTE: Refer to “Rebuild Kit, Cleaning Kit, and Special Tools” on page 24 for kit part numbers.

1. If you have not already done so, purge the valve with a cleaning fluid (refer to “Clean the Fluid Path by Purging with a Cleaning Fluid” on page 15) to remove as much dispensing fluid from the valve as possible.
2. Depressurize the system.
3. Shut off the fluid supply to the valve.
4. If a tip adapter is installed, remove the tip adapter components. Refer to “Install the Tip Adapter (Option)” on page 10 for an illustration of the components for each adapter kit.

CAUTION
- To prevent damage to the tappet, remove the syringe barrel before opening the heater body.
- When opening the heater body, be ready to catch the fluid body assembly. Dropping the assembly can damage it.

5. **Important:** Remove the syringe barrel from the fluid inlet fitting.

 NOTE: For low viscosity fluids, first engage the hose clamp on the syringe adapter assembly to prevent fluid dripping.

6. Remove the fluid body assembly as follows:
 a. Push both sides of the latch pin towards the piezo actuator to open the heater body. This completely frees the fluid body assembly.
 b. Remove the fluid body assembly from the heater body by pulling up on the fluid inlet fitting.
Service (continued)

Clean the Valve by Disassembling the Fluid Body (continued)

CAUTION

Take care not to damage or break the ceramic tappet during disassembly.

CAUTION

For fluid body assemblies with an extended nozzle, do not remove or adjust the extended nozzle component. Doing so can permanently damage the assembly.

7. Disassemble the fluid body assembly as follows:
 a. Being careful to pull straight up on the tappet, remove the tappet, spring, and guide from the cartridge body.
 b. Remove the cartridge body by hand.
 c. Use a wrench to remove the fluid inlet fitting.
 d. Use a flat-tip screwdriver to remove the sealing screw.
 e. Turn the cartridge body upside down and use the long end of the O-ring removal tool, held at a slight angle, to push O-ring out of the bottom of the cartridge body.

 NOTE: This may require several attempts due to the tight tolerance of the cartridge hole.
 f. Isolate the remaining O-rings (the 5 x 1 O-rings and the brown sealing screw O-ring).

8. Continue to the next procedures to clean the fluid body assembly components.

NOTE: Cleaning tools, such as brushes, cotton swabs, mini-reamers, and a magnifying loupe, are included in the *Pulse* valve cleaning kit. Refer to “Rebuild Kit, Cleaning Kit, and Special Tools” on page 24 for the cleaning kit part number.

![Diagram of Fluid Body Components]

- Tappet (a)
- Spring (a)
- Guide (a)
- Cartridge body (b)
- O-ring (5 x 1) (f)
- O-ring (black FFKM) (e)

Important: Extended nozzles are precisely calibrated and factory glued into the fluid body seat. Never remove an extended nozzle from a fluid body assembly.

Service (continued)
Clean the Fluid Body Seat

1. Clean the fluid body seat channel with a brush and cotton swab and, if necessary, with a solvent.
2. Blow out the fluid body seat channel with compressed air.
3. Check the cleanliness with a magnifying loupe or, if available, with a microscope. No lint, particles, residues from dried fluid, or other contaminants may be present in the fluid channel.

Clean the Cartridge Components and Sealing Screw

NOTE: As an alternative to this procedure, fluid body assembly parts can be cleaned using an ultrasonic cleaner.

CAUTION

Take care not to damage or break the ceramic tappet during cleaning.

1. Clean the cartridge, spring, tappet, and guide with a brush and cotton swab and, if necessary, with a solvent.
2. Blow compressed air through the cartridge body to clean the inside.
3. Check the cleanliness with a magnifying loupe or, if available, with a microscope. No lint, particles, residues from dried fluid, or other contaminants may be present on the cartridge.
4. Clean the sealing screw with a cotton swab or cloth and, if necessary, with a solvent.
Service (continued)

Clean the Cartridge Components and Sealing Screw (continued)

⚠️ CAUTION
If too much force is applied with the mini-reamer, the ceramic portion of the nozzle can be damaged (cracked). The reamer can also break, permanently clogging the nozzle.

5. If it is clogged, clean the nozzle by carefully prodding it with a mini-reamer from the cleaning kit.

⚠️ CAUTION
Never use dripping wet cloths and do not pour solvents, alcohol, water, or other liquids directly on the valve. In addition, do not submerge the valve into the cleaning agent, as liquid can get into the piezo electromechanical drive area and permanently damage it.

6. Inspect all O-rings for worn spots, cracks, and other defects. Obtain replacements for damaged O-rings.

⚠️ CAUTION
Do not use an incompatible solvent to clean O-rings.

7. Carefully clean any existing O-rings that are not damaged.

8. Clean the fluid inlet fitting with a cotton swab or cloth and, if necessary, with a solvent, then blow compressed air through the fitting.

Clean the Piezo Actuator

⚠️ CAUTION
Never use dripping wet cloths and do not pour solvents, alcohol, water, or other liquids directly on the valve. In addition, do not submerge the valve into the cleaning agent, as liquid can get into the piezo electromechanical drive area and permanently damage it.

⚠️ CAUTION
Do not use sharp tools to clean the piezo actuator.

When the valve was disassembled, fluid may have contaminated the actuator around the actuator push-rod interface. Clean these areas with a cotton swab, a brush, or a cloth, and if necessary, using small amount of cleaning fluid.
Service (continued)

Assemble the Fluid Body Assembly

NOTE: The fluid body seat and cartridge are precisely calibrated as a matched set and cannot be replaced individually. Doing so can damage the valve.

1. Lubricate all O-rings with a suitable lubricant.
 NOTE: Nordson EFD uses Nye® #865 gel lubricant (P/N 7014917) to lubricate O-rings.

2. Thread the sealing screw with the brown Viton O-ring into the fluid body seat and tighten the screw.

3. Install a larger O-ring (5 x 1 mm) in the groove at the bottom of the cartridge body.

4. Install the small, black FFKM O-ring as follows:
 a. Place the O-ring on the short end of the O-ring insertion tool and hold it in the upright position.
 b. Hold the cartridge body upside down over the tool.
 c. Use the tool to push the O-ring into the cartridge body. It will stop at the correct location.
 NOTE: You will hear a click when the O-ring is in the correct position.
 d. Remove the tool and verify that the O-ring is properly installed.

5. Use the long end of the insertion tool to install the guide in the cartridge body.

6. Install the assembled cartridge body, guide, and O-ring in the fluid body seat and verify the following:
 - The cartridge body hash mark aligns with the hash mark on the fluid body seat.
 - The serial numbers match.

7. Install the spring in the cartridge body.

CAUTION
Take care not to damage or break the ceramic tappet during reassembly.

8. Lightly lubricate the tappet shaft with a suitable lubricant and carefully install it in the cartridge body.

9. Install the fluid inlet fitting and O-ring in the fluid body seat.

10. Install the fluid body assembly in the valve. Refer to “Fluid Body Assembly Removal and Installation” on page 12 as needed.

11. (If applicable) Install the tip adapter components. Refer to “Install the Tip Adapter (Option)” on page 10 for an illustration of the components for each adapter kit.

12. Reconnect the fluid supply and restore the system to normal operation.
Replacement Parts

NOTE: Additional replacement parts are available upon request.

Piezo Actuator

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7361218</td>
<td>Piezo actuator, PICO Pulse, SD</td>
<td>Standard duty actuator for general use in non-contact dispensing applications</td>
</tr>
<tr>
<td>7361283</td>
<td>Piezo actuator, PICO Pulse, HD</td>
<td>Heavy duty actuator for high-duty use in non-contact dispensing applications</td>
</tr>
<tr>
<td>7362059</td>
<td>Piezo actuator, PICO Pulse, HD, tip adapter</td>
<td>Heavy duty actuator for high-duty use in contact dispensing applications. To use this valve for contact dispensing, order the appropriate tip adapter kit. Refer to “Tip Adapter Kits” on page 22.</td>
</tr>
</tbody>
</table>

SD or HD piezo actuator for non-contact dispensing

HD piezo actuator for contact dispensing (requires the use of a tip adapter kit)
Replacement Parts (continued)

Tip Adapter Kits

To use the HD Pulse actuator for contact dispensing, order the correct adapter kit and other components for your application.

- 7362059 Pulse HD actuator for contact dispensing
- 7362028 Luer Lock tip adapter kit for specialty and high precision luer lock tips
- 7362030 DL tip adapter kit for precision footed and non-footed DL dispense tips
- 7361969 Specialty plate adapter kit for legacy accessories
- Quad Viton O-ring (pack of 6)
 - 7362033 (Viton)
 - 7362315 (EPR)
- 7021194 Tip adapter nut for Safety-Lok™ tips
- 7021202 Stainless-steel tip retaining nut
- 7021993 Tip retaining nut (use only for P/N 7362030)
- Quad Viton O-ring (pack of 6)
 - 7362033 (Viton)
 - 7362315 (EPR)
Replacement Parts (continued)

Fluid Body Assemblies

⚠️ CAUTION
The fluid body seat and cartridge are precisely calibrated as a matched set and cannot be replaced individually. Doing so can damage the valve.

Flat Nozzle Fluid Body Assemblies

Use these fluid body assemblies with *Pulse* non-contact jet valves or *Pulse* contact dispense valves.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Orifice</th>
<th>Geometry</th>
<th>Ball Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7362574</td>
<td>Fluid body assembly</td>
<td>50 µm</td>
<td>E</td>
<td>3.0S</td>
<td>3.0S is an 0.8 mm tappet ball end; 5.0S is a 1.5 mm tappet ball end.</td>
</tr>
<tr>
<td>7362575</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>D</td>
<td>3.0S</td>
<td>A Nordson EFD application specialist will help select the best fluid body assembly for optimal jetting performance.</td>
</tr>
<tr>
<td>7362576</td>
<td>Fluid body assembly</td>
<td>200 µm</td>
<td>D</td>
<td>3.0S</td>
<td></td>
</tr>
<tr>
<td>7362577</td>
<td>Fluid body assembly</td>
<td>50 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362578</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362579</td>
<td>Fluid body assembly</td>
<td>150 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362580</td>
<td>Fluid body assembly</td>
<td>300 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362581</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362582</td>
<td>Fluid body assembly</td>
<td>150 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362583</td>
<td>Fluid body assembly</td>
<td>200 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362584</td>
<td>Fluid body assembly</td>
<td>300 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362585</td>
<td>Fluid body assembly</td>
<td>400 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362586</td>
<td>Fluid body assembly</td>
<td>600 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
</tbody>
</table>

Extended Nozzle Fluid Body Assemblies

Use these fluid body assemblies only on *Pulse* non-contact jet valves.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Orifice</th>
<th>Geometry</th>
<th>Ball Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7362703</td>
<td>Fluid body assembly</td>
<td>50 µm</td>
<td>E</td>
<td>3.0S</td>
<td>3.0S is an 0.8 mm tappet ball end; 5.0S is a 1.5 mm tappet ball end.</td>
</tr>
<tr>
<td>7362704</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>D</td>
<td>3.0S</td>
<td>A Nordson EFD application specialist will help select the best fluid body assembly for optimal jetting performance.</td>
</tr>
<tr>
<td>7362705</td>
<td>Fluid body assembly</td>
<td>200 µm</td>
<td>D</td>
<td>3.0S</td>
<td></td>
</tr>
<tr>
<td>7362706</td>
<td>Fluid body assembly</td>
<td>50 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362707</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362708</td>
<td>Fluid body assembly</td>
<td>150 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362709</td>
<td>Fluid body assembly</td>
<td>300 µm</td>
<td>E</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362710</td>
<td>Fluid body assembly</td>
<td>100 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362711</td>
<td>Fluid body assembly</td>
<td>150 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362712</td>
<td>Fluid body assembly</td>
<td>200 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362713</td>
<td>Fluid body assembly</td>
<td>300 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362714</td>
<td>Fluid body assembly</td>
<td>400 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
<tr>
<td>7362715</td>
<td>Fluid body assembly</td>
<td>600 µm</td>
<td>D</td>
<td>5.0S</td>
<td></td>
</tr>
</tbody>
</table>
Replacement Parts (continued)

Rebuild Kit, Cleaning Kit, and Special Tools

The PICO Pulse rebuild and cleaning kits contain all the replacement parts and special tools required to safely and effectively service the valve. The optional special tools facilitate fluid body assembly removal and component replacement.

<table>
<thead>
<tr>
<th>Item</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
</table>
| | 7362563 | Fluid body cartridge rebuild kit:
• Guide
• Spring
• O-ring, 5 x 1 mm, Viton (1)
• O-ring, 1.5 x 1 mm, FFKM (1)
• Nye #865 gel lubricant, 1 g |
| | 7361295 | PICO Pulse / fluid body assembly cleaning kit (includes brushes, cotton swabs, mini-reamers, and a magnifying loupe) |
| | 7361630 | Latch release tool (opens the piezo actuator heater body; useful for installations with limited side access to the valve) |
| | 7362812 | O-ring removal / insertion tool (facilitates removal and installation of the O-ring inside the cartridge) |

NOTE: The cartridge body is not replaceable because it is precisely matched to the fluid body seat.
Replacement Parts (continued)

Fluid Inlet Fittings

NOTE: Additional fluid inlet fittings are available. Contact your Nordson EFD representative for information on other fittings.

<table>
<thead>
<tr>
<th>Fitting</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7362606</td>
<td>Fitting: M5 x female luer lock, straight, stainless steel (includes Viton O-ring)</td>
</tr>
<tr>
<td></td>
<td>7361303</td>
<td>O-rings: 5 x 1 mm, Viton, brown, 10 pc</td>
</tr>
<tr>
<td></td>
<td>7361681</td>
<td>O-rings: 5 x 1 mm, FFKM, black, 3 pc</td>
</tr>
<tr>
<td></td>
<td>7020669</td>
<td>Fitting: M5 X 3/32" ID barb, stainless steel</td>
</tr>
<tr>
<td></td>
<td>7021919</td>
<td>Fitting: 10-32 UNF X 3/32" barb</td>
</tr>
<tr>
<td></td>
<td>7020671</td>
<td>Fitting: M5 X 1/8" ID barb, stainless steel</td>
</tr>
<tr>
<td></td>
<td>7020673</td>
<td>Fitting: M5 X 1/8" ID barb, stainless steel, elbow</td>
</tr>
<tr>
<td></td>
<td>7361498</td>
<td>Fitting: M5 x 35 mm male-female extension, stainless steel</td>
</tr>
<tr>
<td></td>
<td>7361645</td>
<td>Flat washers, M5 fitting, EPDM, 10 pc (for legacy M5 fittings)</td>
</tr>
<tr>
<td></td>
<td>7361959</td>
<td>Flat washers, M5 fitting, FFKM, 2 pc (for legacy M5 fittings)</td>
</tr>
</tbody>
</table>

Valve Extension Cables

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7362085</td>
<td>0.6 m (2.0 ft) valve extension cable set</td>
<td></td>
</tr>
<tr>
<td>7361298</td>
<td>2 m (6.6 ft) valve extension cable set</td>
<td>Includes one each for power and communication</td>
</tr>
<tr>
<td>7361299</td>
<td>6 m (19.7 ft) valve extension cable set</td>
<td></td>
</tr>
<tr>
<td>7361300</td>
<td>9 m (29.5 ft) valve extension cable set</td>
<td></td>
</tr>
</tbody>
</table>
Replacement Parts (continued)

Optional Parts and Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7020584</td>
<td>Pressure regulator, 0–7 bar (0–100 psi)</td>
</tr>
<tr>
<td></td>
<td>7020585</td>
<td>Pressure regulator, 0–1 bar (0–15 psi)</td>
</tr>
<tr>
<td></td>
<td>7361815</td>
<td>Universal valve mounting bracket for PRO, EV, and E Series automated dispensing systems</td>
</tr>
<tr>
<td></td>
<td>7361654</td>
<td>Valve mounting bracket for other multi-axis systems and in-line dispensing arms</td>
</tr>
</tbody>
</table>
| | 7362459 | High pressure adapter kit, straight fitting
NOTE: High pressure adapter kits allow a material supply pressure to the valve of up to 48 bar (700 psi). |
| | 7362543 | High pressure adapter kit, 90° elbow
NOTE: High pressure adapter kits allow a material supply pressure to the valve of up to 48 bar (700 psi). |
| | 7361632 | Barrel stabilizer for the PICO Pulse valve |
| | 7361770 | HP3cc to M5 fitting adapter kit
NOTE: The HP3cc adapter uses a 3cc syringe and produces up to 49 bar (700 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |
| | 7361771 | HP5cc to M5 fitting adapter kit
NOTE: The HP5cc adapter uses a 5cc syringe and produces up to 28 bar (400 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |
| | 7361772 | HP10cc to M5 fitting adapter kit
NOTE: The HP10cc adapter uses a larger capacity 10cc syringe and produces up to 28 bar (400 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |

<table>
<thead>
<tr>
<th>Item</th>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
</table>
| | 7361770 | HP3cc to M5 fitting adapter kit
NOTE: The HP3cc adapter uses a 3cc syringe and produces up to 49 bar (700 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |
| | 7361771 | HP5cc to M5 fitting adapter kit
NOTE: The HP5cc adapter uses a 5cc syringe and produces up to 28 bar (400 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |
| | 7361772 | HP10cc to M5 fitting adapter kit
NOTE: The HP10cc adapter uses a larger capacity 10cc syringe and produces up to 28 bar (400 psi) of dispensing pressure from 7.0 bar (100 psi) of input. |
Troubleshooting

Use this troubleshooting table to diagnose and correct valve dispensing problems. To avoid the risk of equipment damage or personal injury, depressurize the reservoir and switch OFF the Touch controller power before connecting or disconnecting any device or performing any service or troubleshooting work.

NOTE: To dispense very small and precise amounts of fluid, the Pulse valve has an extremely small opening. This opening can be blocked by the smallest contaminants, which is a common cause of poor dispensing results. However, there are several other possible causes for a non-functioning valve that should be checked first: refer to “How to Determine if Valve Cleaning is Needed” on page 14.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fluid flow from the valve</td>
<td>No power to the system</td>
<td>Ensure that power is supplied to the system. Verify that the controller display is ON and that the power LED is illuminated (green).</td>
</tr>
<tr>
<td></td>
<td>Loose or disconnected cable or electrical connection</td>
<td>Check all system cable and electrical connections.</td>
</tr>
<tr>
<td></td>
<td>Fluid reservoir empty</td>
<td>Check the fluid reservoir.</td>
</tr>
<tr>
<td></td>
<td>No pressure or very low pressure supply to fluid reservoir</td>
<td>Check the main air pressure.</td>
</tr>
<tr>
<td></td>
<td>Incorrect parameter settings</td>
<td>Check the setup parameters at the controller.</td>
</tr>
<tr>
<td></td>
<td>Valve temperature too low</td>
<td>Check the temperature settings at the controller or PLC.</td>
</tr>
<tr>
<td></td>
<td>Controller error</td>
<td>Check the controller display for an error message. Refer to the Touch controller operating manual to troubleshoot controller error messages.</td>
</tr>
<tr>
<td></td>
<td>Valve opening clogged or blocked</td>
<td>Clean the fluid body assembly. Refer to “Service” on page 13.</td>
</tr>
<tr>
<td>Poor dispensing</td>
<td>Valve opening clogged or blocked or cartridge damaged</td>
<td>Clean the fluid body assembly. Refer to “Service” on page 13.</td>
</tr>
<tr>
<td>Residual flow after the valve closes, in which drops or a film forms on the outside of the nozzle</td>
<td>Ball stem not seating or nozzle plate or ball worn/pitted</td>
<td>Clean the fluid body assembly. Inspect the components for damage or wear. Refer to “Service” on page 13.</td>
</tr>
<tr>
<td></td>
<td>Voltage drop in power supply to controller</td>
<td>Refer to the Touch controller operating manual to troubleshoot the controller.</td>
</tr>
<tr>
<td></td>
<td>Controller damaged</td>
<td>Refer to the Touch controller operating manual to troubleshoot the controller.</td>
</tr>
<tr>
<td>Nozzle leakage</td>
<td>System power shut off but fluid pressure remains</td>
<td>Maintain power to the system or remove the fluid pressure.</td>
</tr>
<tr>
<td></td>
<td>Damaged fluid body assembly</td>
<td>Inspect the fluid body assembly ball and seat for any pitting or damage. Replace the fluid body assembly as needed. Refer to “Service” on page 13.</td>
</tr>
</tbody>
</table>
NORDSON EFD ONE YEAR LIMITED WARRANTY

Nordson EFD products are warranted for one year from date of purchase to be free from defects in material and workmanship (but not against damage caused by misuse, abrasion, corrosion, negligence, accident, faulty installation or by dispensing material incompatible with equipment) when the equipment is installed and operated in accordance with factory recommendations and instructions. Nordson EFD will repair or replace free of charge any part of the equipment thus found to be defective, on authorized return of the part prepaid to our factory during the warranty period. In no event shall any liability or obligation of Nordson EFD arising from this warranty exceed the purchase price of the equipment. This warranty is valid only when oil-free, clean, dry, filtered air is used.

Nordson EFD makes no warranty of merchantability or fitness for a particular purpose. In no event shall Nordson EFD be liable for incidental or consequential damages.